Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 179: 113671, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468471

RESUMO

Metal contamination has never been assessed in Ampullae of Lorenzini. This study employed Rhizoprionodon lalandii, as an ecotoxicological model to investigate potential metal accumulation in Ampullae of Lorenzini jelly. No differences between sexes were observed regarding jelly metal concentrations at Rio das Ostras (RJ) or Santos (SP). Statistically significant correlations were noted between total lengths (TL) and condition factors and several metals at both sampling sites, demonstrating the potential for Chondrichthyan sensory capacity disruption and possible effects on foraging success. Maternal metal transfer to Ampullae jelly was confirmed. Rhizoprionodon lalandii is thus, a good model to assess Ampullae of Lorenzini contamination, as this electrosensory organ seems to be highly vulnerable to metal contamination.


Assuntos
Metaloides , Tubarões , Animais , Brasil , Ecotoxicologia , Metais , Alimentos Marinhos
2.
Mar Pollut Bull ; 177: 113569, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35334308

RESUMO

This study comprises a novel report on subcellular metal partitioning and metallothionein (MT) metal detoxification efforts in lesser numbfish (Narcine brasiliensis) electric ray specimens, as well as the first assessment on MT contents in any ray electric organ. Individuals sampled from an area in Southeastern Brazil affected by the Mariana dam rupture disaster were assessed concerning subcellular metal partitioning and MT metal-detoxification in the liver, gonads, electric organ and muscle of both adults and embryos. Yolk was also assessed when available. Relative total and heat-stable (bioavailable) metal and metalloid comparisons between adults and embryos in different developmental stages demonstrates maternal transfer of both total and bioavailable metals and significant MT associations demonstrate the detoxification of As, Ag, Mn, Ni, Cd, Co, Cu, Se and V through this biochemical pathway. Our findings expand the lacking ecotoxicological assessments for this near-threatened species and indicates significant ecological concerns, warranting further biomonitoring efforts.


Assuntos
Desastres , Poluentes Químicos da Água , Animais , Brasil , Metais/metabolismo , Torpedo/metabolismo , Poluentes Químicos da Água/química
3.
Environ Pollut ; 288: 117784, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329051

RESUMO

It is widely recognized that apex predators, such as large sharks with highly migratory behavior, are particularly vulnerable to pollution, mainly due to biomagnification processes. However, in highly impacted areas, mesopredator sharks with resident behavior can be as vulnerable as apex sharks. In this context, this study evaluated cadmium (Cd), mercury (Hg), lead (Pb), and rubidium (Rb) concentrations, as well as the potentially protective effects of selenium (Se) and the behavior of two non-enzymatic biomarkers, metallothionein (MT) and reduced glutathione (GSH), employing the Atlantic nurse shark Ginglymostoma cirratum as a study model and compared the results with other resident benthic sharks, as well as highly mobile apex sharks. Muscle tissue samples from 28 nurse sharks opportunistically sampled from the Brazilian Amazon Coast were analyzed. Lower metal concentrations were observed for Pb, Rb and Se in the rainy season, while statistically significant correlations between metals were observed only between Hg and Cd and Pb and Se. Molar ratio calculations indicate potential protective Se effects against Pb, but not against Cd and Hg. No associations between MT and the determined metals were observed, indicating a lack of detoxification processes via the MT detoxification route. The same was noted for GSH, indicating no induction of this primary cellular antioxidant defense. Our results indicate that benthic/mesopredator sharks with resident behavior are, in fact, as impacted as highly mobile apex predators, with the traditional detoxification pathways seemingly inefficient for the investigated species. Moreover, considering the studied population and other literature data, pollution should be listed as a threat to the species in future risk assessments.


Assuntos
Mercúrio , Tubarões , Animais , Mercúrio/análise , Metais , Estresse Oxidativo , Navios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...